שווי משקל תחרותי עם ייצור

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "שווי משקל תחרותי עם ייצור"

Transcript

1 שווי משקל תחרותי עם ייצור 1 התנהגות היצרן )תזכורת מחירים ב'( ma π = p -p s.t. = ƒ)( ma p ƒ)(-p בעיית הפירמה: או: 2 1

2 3 התנהגות היצרן )תזכורת מחירים ב'( * רווח במונחי p Slopes p * f ' p p f () תמונת ראי של בעיית הפירמה f ( 0 ) * p MP f '( ) p * עלות גורם הייצור רווח במונחי עקומת התמורה 4 * 0 2

3 התנהגות תחרותית בכלכלת חליפין-ייצור בכלכלת חליפין-ייצור עם בעלות פרטית יש פרטים ופירמות. לכל פרט יש העדפות, סל תחילי של מוצרים )בדרך כלל גו"י(, ואחוזי בעלות על הפירמות השונות. לכל פירמה יש פ' ייצור. וקטור מחירים "נזרק" לחלל העולם. פירמה תחרותית מתייחסת למחירים כנתונים וממקסמת את רווחיה, כתוצאה מתקבלים ביקושים לגורמי ייצור, היצעים למוצרים ורמות רווח. פרט תחרותי מתייחס למחירים כנתונים, "יודע" מהם הרווחים הצפויים מהפירמות השונות, וממקסם את רווחתו בהינתן מגבלת התקציב הנגזרת מהמחירים ומהסל התחילי שלו, בתוספת הרווחים המגיעים לו בשל % הבעלות שלו בפירמות. 5 שיווי משקל תחרותי עם ייצור וקטור המחירים הנ"ל מהווה שיווי משקל תחרותי, אם אמונות הפרטים לגבי רווחי הפירמות מתגשמות, ואם כל השווקים מתנקים. לסיכום, בכלכלת חליפין-ייצור, שיווי משקל תחרותי הינו: הקצאה אפשרית ווקטור מחירים עבורם: תכנית הייצור של כל יצרן ממקסמת את רווחיו בהינתן המחירים. הסל אותו מקבל כל פרט ממקסם את תועלתו בהינתן קו התקציב הנובע מהסל התחילי, הרווחים המחולקים )על פי אחוזי הבעלות(, ווקטור המחירים. 6 3

4 שיווי משקל תחרותי עם ייצור הערות: הקצאה אפשרית מבטאת ניקוי שווקים. המקסום בהינתן המחירים מבטא התנהגות תחרותית. חוק וולראס ממשיך להתקיים. הפרטים לא מתערבים בניהול הפירמות, ולא חושבים איך מכירות להן או קניות מהן משפיעים על הרווחים. אין כאן מסחר במניות. אם היה מסחר, מחיר המניה היה שווה לרווחי הפירמה. 7 רובינסון קרוזו לפירמה )קרוזו בע"מ( פונקצית ייצור ) p. p =ƒ)x בהינתן מחירי השוק )p= p( p,1= הפירמה ממקסמת רווח π. רובינסון הצרכן הוא בעל המניות היחיד של קרוזו בע"מ. לכן הוא מקבל את רווחי הפירמה π. בנוסף, יש לו ביממה 24= 0 X שעות פנאי שחלק X P מהן הוא יכול למכור בשוק )לעבוד(. 8 4

5 קרוזו בע"מ )תמונת ראי של בעיית הפירמה( עקומת התמורה f ( 0 p) MP p p p 1 p * רווח π )במונחי ( p p רובינסון הצרכן קו תקציב שיפוע p /p =p l * סל תחילי π 10 X 0 -X P * X P * 5

6 שווי משקל תחרותי * סל תחילי של רובינסון הצרכן π 11 X 0 -X P * X p * כיצד מחשבים ש"מ תחרותי עם ייצור נתונות פונקציות הייצור של הפירמות, העדפות, סלים תחיליים ותיקי מניות )בעלות( של הפרטים. מחשבים את פונקציות הביקוש )לגורמי ייצור(, פונקציות ההיצע )של מוצרים( ופונקציות הרווח של כל פירמה. מציבים את רווחי הפירמות לתוך מגבלות התקציב של הפרטים, ומחשבים את פונקציות הביקוש )למוצרים( וההיצע )של גורמי ייצור( של הפרטים. 12 6

7 כיצד מחשבים ש"מ תחרותי עם ייצור מנקים את השווקים על ידי פתרון מערכת משוואות n מספר המוצרים וגורמי הייצור, עם n משוואות, )n נעלמים שהם המחירים( המתקבלת מהשוואת הביקוש המצרפי לכל מוצר וגורם ייצור לכמות המוצעת שלו. כמו מקודם משוואות אילו אינן בלתי תלויות ולמעשה ניתן לוותר על אחת. הקצאת שיווי המשקל מתקבלת מחישוב תכניות הייצור של הפירמות והביקושים של הפרטים, עבור יחסי המחירים שחושבו. הסיבה לדרגת החופש בקביעת המחירים היא ההומוגניות מדרגה אפס של הביקושים וההיצעים, וההומוגניות מדרגה אחד של הרווחים. 13 שמ"ת עם ייצור דוגמא עם צרכן אחד רובינסון הצרכן פ' תועלת מפנאי ותצרוכת: u),l(=l הקצאה התחלתית =24 0 l רובינסון הצרכן מחלק את זמנו בין פנאי )l( לעבודה )L(: l 0 =l+l פירמה קרוזו בע"מ פ ' ייצור ½ ƒ)l(=l בבעלות רובינסון 14 ננרמל מחירים בכך שנקבע 1= p. 7

8 שמ"ת עם ייצור דוגמא עם צרכן אחד בעיית קרוזו בע"מ: מקסום רווחים מחייב,mp L p =p l כלומר,ƒ 1=p l ולכן ½L -½ =p l. S =1/(2p ולכן L D =1/(2p l ) 2 l ) מכאן ש לפיכך, הרווח של קרוזו הוא: π=1 S -p l L D =1/(2p l )-p l /(2p l ) 2 =1/(4p l ) 15 שמ"ת עם ייצור דוגמא עם צרכן אחד בעיית רובינסון הצרכן: התקציב שלו הוא 24 יחידות l, ועוד רווחים מהפירמה בסך ) l 4p)/1. לפיכך הוא פותר ma,l l s.t. p l l+ 1 = p l 24+1/(4p l ) לפיכך: D =(p l 24+1/(4p l ))/(2 1)=12p l +1/(8p l ) 16 8

9 17 שמ"ת עם ייצור כעת ננכה את אחד השווקים, לדוגמא : דוגמא עם צרכן אחד S =1/(2p l ) D =12p l +1/(8p l ) 12p l +1/(8p l )=1/(2p l ) p l =1/ 32 ועכשיו אפשר לחשב את הקצאת שווי המשקל: קרוזו בע"מ מייצרת, ורובינסון צורך =1/(2(1/ 32))= 8 L D =1/(2p l ) 2 =8 -L=24-8=16 l=l 0 שעות. צריכת העבודה של הפירמה: ולפיכך רובינסון נח דוגמא עם שני צרכנים במשק ישנם שני צרכנים: צרכן 1 U 1 ( 1, 1 ) = 1¼ 1¾ ; w 1 = (10,0) ; θ 1 = 0.4 צרכן 2 U 2 ( 2, 2 ) = ln( 2 )+ 2 ; w 2 = (15,0) ; θ 2 = 0.6 p = 10 p ½ הפירמה מייצרת באמצעות על ידי: )ננרמל =1 )p =p,p 18 9

10 דוגמא עם שני צרכנים בעיית הפירמה: π=ma 10 p½ - p p תנאי סדר ראשון: 5 -½ p = p )הפירמה משווה את ערך התפוקה השולית של גורם היצור למחירו.( מתנאי הסדר הראשון הנ"ל נקבל את ביקוש הפירמה לגורם יצור. p (p,1) = 25/p 2 נציב את p שמצאנו בפ' הייצור, ונקבל את פ' ההיצע של הפירמה ל- : p (p,1) = 50/p נציב את הגדלים p, p בפ' המטרה, ונקבל את פ' הרווח של הפירמה: π p (p,1) = 25/p 19 בעיית צרכן 1: דוגמא עם שני צרכנים ma 1, 1 1¼ 1 ¾ s.t. p = 10p+10/p כאשר המחובר השני באגף ימין הינו חלקו של צרכן הפירמה. מבעיית צרכן זו נגזרת מערכת הביקושים הבאה: 1 (p,1)=(10p+10/p)/4p 1 ברווחי 1 (p,1)=3(10p+10/p)/

11 בעיית צרכן 2: דוגמא עם שני צרכנים 2 ma 2,2 ln( 2 )+ 2 s.t. p = 15p+15/p כאשר המחובר השני באגף ימין הינו חלקו של צרכן הפירמה. מבעיית צרכן זו נגזרת מערכת הביקושים הבאה: ברווחי 2 (p,1)=1/p, 2 (p,1)=15p+15/p-1 21 דוגמא עם שני צרכנים עד כה ראינו כיצד כל יחידה כלכלית מקסמה את פ' המטרה שלה בהינתן המחירים. השלב הבא יהיה לפתור עבור המחיר p שינקה את השווקים. תנאי שיווי משקל בשוק : 1 (p,1)+ 2 (p,1)+ p (p,1)= p 2 -p-27.5=0 p=1.128 כלומר מחירי שיווי משקל הינם: והקצאת שיווי משקל הינה: 22 (p,p )=(1.128,1) 1 =4.46, 1 =15.11, 2 =0.89, 2 =29.22, רווח הפירמה הוא: 22.16=π p =19.65, p =

12 דוגמא עם שני צרכנים ראינו כי המחיר שניקה את שוק ה-, מנקה גם את שוק. זהו חוק וולראס. כמובן שהיינו יכולים באותו אופן לרשום את משוואת שיווי המשקל בשוק, וממנה לפתור עבור p. במקרה זה: 1 (p,1)+ 2 (p,1) = p (p,1( 7.5p+7.5/p+15p+15/p-1 = 50/p 22.5p 2 -p-27.5 p= פ' התועלת של הפרט: דוגמא עם מוצרים תחליפיים (,l) = +l פ' הייצור: ƒ)l( = L 0.5 l 0 היא כמות l שעומדת לרשות הצרכן. ננרמל את המחירים על ידי שנקבע 1= p. את התנהגות הפירמה מצאנו בדוגמת רובינסון: L D =1/(2p l ) 2 S =1/(2p l ) π=1/(4p l ) 24 12

13 התנהגות הצרכן: דוגמא עם מוצרים תחליפיים l D =l 0, D =0 l D =0, D = l 0 p l +π אם 1> l p הצרכן יצרוך אך ורק פנאי: : הצרכן יצרוך אך ורק p l אם 1< אם 1= l p הצרכן אדיש בין כל ההקצאות )האי-שליליות( של l ו-, שמקיימים את מגבלת התקציב שלו. ברור שאם 0< p ו- > l p הפירמה תבקש כמות חיובית של L. מאידך, אם 1> l p היצע העבודה של הפרט יהיה 0. לפיכך, שיווי המשקל לא יכול להיות בתחום 1> l p. 25 נבחן שתי אפשרויות לגבי l: 0 דוגמא עם מוצרים תחליפיים אפשרות א': =0.1 0 l ראינו כבר ש- 1> l p לא יכול להיות מחיר שיווי משקל. האם יתכן ש- =1 l?p במקרה זה =1/4 D.L D 0 =0.1<L אבל, l כלומר אפילו אם הפרט לא צורך בכלל פנאי הוא לא יספק מספיק עבודה כדי לענות על הביקוש של הפירמה לעבודה. נשאר לבדוק את >1 l.p במקרה זה -2 ) l,l D =(2p ו- =0 D.l נציב ב- =0.1 0 =l ונקבל: =0.1-2 ) l.0+(2p l D +L D לפיכך =1.58 l.p השווקים מתנקים עם =0.1 0,L D =l ו- =0 D. D = S = l הצרכן עובד את כל הזמן שברשותו וצורך את מירב ה- שהוא מסוגל בעזרת ההכנסה הנובעת מעבודתו ומרווחיו. )ניתן לוודא את התוצאה עם שוק ה- ) 26 13

14 דוגמא שמ"ת עם מוצרים תחליפיים אפשרות ב': =24 0 l ננסה שוב עם 1= l p. מקבלים =1/4<24 D.L נציב ב =24 D,l D +L ונקבל: l D =24-1/4=23.75 ושוק המוצר מתנקה כאשר =1/2 S. D = אפשר לבדוק את החישוב דרך הביקוש של הפרט:. D =π+l S p l =1/4+1/4*1=1/ דוגמא עם תשואה קבועה לגודל טכנולוגיית היצור של = k : טכנולוגיית היצור של =k : )תק"ל( ננרמל את p k ל- 1 ראינו מקודם שמקסום רווח ביצור מחייב:.π =p 2 /4, s =p /2,k D =¼p 2 מכיוון שיש תק"ל בייצור אנו יודעים שאם 1< p הפירמה תבקש כמות אינסופית של k ולכן זה אינו שיווי משקל. נותרו 2 אפשרויות:. והפירמה מייצרת 0 יחידות p <1.k D =k 0 -k D הפירמה אדישה לגבי רמות הייצור, ולכן p 1= בכל מקרה הרווח הוא 0. 14

15 דוגמא עם תשואה קבועה לגודל כעת נניח שיש שני צרכנים, לכל אחד חצי יחידת k, וחצי מהבעלות על הפירמות. פ' התועלת של הצרכנים: u A ( A, A )= A A 2 u B ( B, B )= B2 B הביקוש של הצרכנים: ( A, A ) D =)⅓I A /p,⅔i A /p ), ( B, B ) D =)⅔I B /p,⅓i B /p ) ההכנסה של כל פרט היא: I A =I B =½p k +π /2+π /2=½+⅛p 2 למציאת ש"מ יש לפתור עבור,p,p,k,k, A, B, A, B בעזרת המשוואות לעיל ו- מ המשוואות לניקוי השווקים: 29 AD + BD = S ; AD + BD = S ; k AD +k BD =k 0 30 דוגמא עם תשואה קבועה לגודל משוואת ניקוי השוק עבור היא רגילה: )½+⅛p 2 )/3p +2)½+⅛p 2 )/3p =p /2 p =2/ 3 משוואות ניקוי השווקים האחרות שונות במקצת בגלל התק"ל. אנחנו יודעים שאם בש"מ חיובי אז 1= p, ולכן הביקוש ל- : AD + BD =⅔I A /p +⅓I B /p =⅔)½+⅛p 2 (+⅓)½+⅛p 2 ) ההיצע של נקבע ע"י הביקוש. הצבה של המחיר שמצאנו ל- נותנת ⅔= D. S = מכאן ש- ⅔= D k )כמות k הדרושה לייצור (. במשוואת ניקוי השווקים השלישית אפשר להשתמש לבדיקה: k D =¼p 2, k 0 =1 k D =1-¼p 2 =⅔ 15

16 לרשימות מפורטות על נושא מציאת שווי משקל תחרותי, כולל דוגמאות נוספות, ניתן להוריד מאתר הקורס את הקבצים: CE Eamples CE- Another Eample 31 משק פתוח ומסחר בינ"ל )רשות( 32 16

17 התנהגות תחרותית במשק פתוח נניח כי במשק יש שני מוצרים X ו Y, שני גורמי ייצור K ו - L, צרכן אחד )מייצג( עם העדפות U ושני יצרנים עם פונקציות ייצור F ו.G נניח כי המשק הינו משק קטן והיחידות הכלכליות במשק מתייחסות למחירי המוצרים הבינלאומיים כנתונים. מחירי גורמי הייצור לעומת זאת נקבעים על ידי כוחות השוק בתוך המשק. מהו שיווי משקל תחרותי? וקטור מחירים ותכנית ייצור צריכה שמנקה את השווקים בה כל יצרן ממקסם את רווחיו וכל צרכן )למעשה הצרכן המייצג( ממקסם את תועלתו. בניקוי שווקים המגבלה היא למעשה ניקוי השווקים ל K ול L מאחר וניתן לקנות ולמכור כל כמות של X ו Y בשווקים הבינלאומיים. 33 שיווי משקל במשק סגור נניח כי במשק יש גורם ייצור אחד K. במשק יש 800 יחידות K ייצור X ניתן על ידי, X=K X וייצור - Y על ידי Y=K Y במשק יש "פרט מייצג" אשר העדפותיו ניתנות על ידי XY )שימו לב כי כל ה - K והפירמות נמצאים בבעלות הפרט המייצג(. שיווי משקל אוטרקי: ננרמל על ידי בחירת 1= K. P - נקבל כתנאי סדר ראשון 0.5P Ma P X K 0.5 X K X יצרן X יפתור - X X -K = מכאן: K X =P 2 X /4 ; X P =P X /2 ; X = P 2 X /4 ובאופן דומה נקבל עבור יצרן ה - Y כי : K Y =P 2 Y /4 ; Y P =P Y /2 ; Y = P 2 Y /4 הצרכן המייצג יפתור: Ma XY S.T. P X X+P Y Y=800+P 2 X /4+P 2 Y /4 ונקבל כי : X D = (800+P 2 X /4+P 2 Y /4)/(2P X ); Y D = (800+P 2 X /4+P 2 Y /4)/(2P Y ) 34 17

18 שיווי משקל במשק סגור - המשך X D =X P בכדי לנקות את השווקים נפתור את מערכת המשוואות: P X =40 ; P Y = 40 ; K X =400 ; K Y =400 ; X=20 ; Y=20 Y D =Y P זו נקודת הייצור/צריכה של המשק האוטרקי. 35 שיווי משקל במשק פתוח בכדי לנקות את שוק ה =20 Y P X =60 ; P נניח כי המחירים העולמיים הנם : כלומר למשק יש יתרון יחסי בייצור X. נחפש את מחיר שיווי המשקל של K ואת נקודות הצריכה והייצור של המשק. נקבל כתנאי סדר ראשון Ma 60K 0.5 X X -P K K יצרן X יפתור - מכאן: 30K -0.5 X = P K נקבל עבור יצרן ה- Y כי : ובאופן דומה K X =900/P K2 ; X P =30/P K ; X =900/P K P K = ונקבל K X +K Y =800 נפתור: K - K Y =100/P K2 ; Y P =10/P K ; Y =100/P K לכן. =89.44 Y K X =720 ; X P =26.83 ; X = ; K Y =80 ; Y P =8.94 ; הכנסתו של הצרכן המייצג היא = הצרכן יפתור: Ma XY S.T. 60X+20Y= ונקבל כי : X C = /120=14.91 ; Y C = /40=44.72 זו תהיה נקודת הצריכה. המשק ייצא יחידות X במחיר 60 וייבא יחידות Y 36 במחיר 20 18

19 מסחר בין לאומי p /p בינ"ל מקסום תועלת במחירים בינ"ל 37 יבוא π/p קניית גו "י ע"י הפירמה המקומית מקסום רווחים במחירים בינ"ל אופטימום ללא מסחר בינ"ל צריכת גו"י ע"י הפרט יצוא ייצור מקומי צריכת ע"י הפרט 19

התנהגות תחרותית בכלכלת חליפין-ייצור בכלכלתחליפין-ייצורעםבעלותפרטיתישפרטיםופירמות. לכל פרטישהעדפות, סלתחילישלמוצרים (בדרךכללגורמיייצור) ואחוזיבעלותעלהפ

התנהגות תחרותית בכלכלת חליפין-ייצור בכלכלתחליפין-ייצורעםבעלותפרטיתישפרטיםופירמות. לכל פרטישהעדפות, סלתחילישלמוצרים (בדרךכללגורמיייצור) ואחוזיבעלותעלהפ שיווי משקל תחרותי במשק עם ייצור משפטי הרווחה 1 התנהגות תחרותית בכלכלת חליפין-ייצור בכלכלתחליפין-ייצורעםבעלותפרטיתישפרטיםופירמות. לכל פרטישהעדפות, סלתחילישלמוצרים (בדרךכללגורמיייצור) ואחוזיבעלותעלהפירמותהשונות.

Διαβάστε περισσότερα

בסל A רמת התועלת היא: ) - השקה: שיפוע קו תקציב=שיפוע עקומת אדישות. P x P y. U y P y A: 10>6 B: 9>7 A: 5>3 B: 4>3 C: 3=3 C: 8=8 תנאי שני : מגבלת התקציב

בסל A רמת התועלת היא: ) - השקה: שיפוע קו תקציב=שיפוע עקומת אדישות. P x P y. U y P y A: 10>6 B: 9>7 A: 5>3 B: 4>3 C: 3=3 C: 8=8 תנאי שני : מגבלת התקציב תנאי ראשון - השקה: שיפוע קו תקציב=שיפוע עקומת אדישות 1) MRS = = שיווי המשקל של הצרכן - מציאת הסל האופטימלי = (, בסל רמת התועלת היא: ) = התועלת השולית של השקעת שקל (תועלת שולית של הכסף) שווה בין המוצרים

Διαβάστε περισσότερα

c>150 c<50 50<c< <c<150

c>150 c<50 50<c< <c<150 מוצרים ציבוריים דוגמה ראובןושמעוןשותפיםלדירה. הםשוקליםלקנותטלוויזיהלסלוןהמשותף. ראובןמוכןלשלםעד 00 עבורהטלוויזיה. שמעוןמוכןלשלםעד 50 עבורהטלוויזיה. אפשרלקנותטלוויזיהב- c. האם כדאי להם לקנות אותה? תלוי

Διαβάστε περισσότερα

קורס: מבוא למיקרו כלכלה שיעור מס. 17 נושא: גמישויות מיוחדות ושיווי משקל בשוק למוצר יחיד

קורס: מבוא למיקרו כלכלה שיעור מס. 17 נושא: גמישויות מיוחדות ושיווי משקל בשוק למוצר יחיד גמישות המחיר ביחס לכמות= X/ Px * Px /X גמישות קשתית= X(1)+X(2) X/ Px * Px(1)+Px(2)/ מקרים מיוחדים של גמישות אם X שווה ל- 0 הגמישות גם כן שווה ל- 0. זהו מצב של ביקוש בלתי גמיש לחלוטין או ביקוש קשיח לחלוטין.

Διαβάστε περισσότερα

פתרון תרגיל 8. מרחבים וקטורים פרישה, תלות \ אי-תלות לינארית, בסיס ומימד ... ( ) ( ) ( ) = L. uuruuruur. { v,v,v ( ) ( ) ( ) ( )

פתרון תרגיל 8. מרחבים וקטורים פרישה, תלות \ אי-תלות לינארית, בסיס ומימד ... ( ) ( ) ( ) = L. uuruuruur. { v,v,v ( ) ( ) ( ) ( ) פתרון תרגיל 8. מרחבים וקטורים פרישה, תלות \ אי-תלות לינארית, בסיס ומימד a d U c M ( יהי b (R) a b e ל (R M ( (אין צורך להוכיח). מצאו קבוצה פורשת ל. U בדקו ש - U מהווה תת מרחב ש a d U M (R) Sp,,, c a e

Διαβάστε περισσότερα

חורף תש''ע פתרון בחינה סופית מועד א'

חורף תש''ע פתרון בחינה סופית מועד א' מד''ח 4 - חורף תש''ע פתרון בחינה סופית מועד א' ( u) u u u < < שאלה : נתונה המד''ח הבאה: א) ב) ג) לכל אחד מן התנאים המצורפים בדקו האם קיים פתרון יחיד אינסוף פתרונות או אף פתרון אם קיים פתרון אחד או יותר

Διαβάστε περισσότερα

מבוא מונופול - נושאים הסיבות להיווצרות מונופול בלעדיות, פטנט, זיכיונות ייצור, מונופול טבעי בעיית המונופול במישור ביקוש היצע הצגה גראפית ואלגברית האינד

מבוא מונופול - נושאים הסיבות להיווצרות מונופול בלעדיות, פטנט, זיכיונות ייצור, מונופול טבעי בעיית המונופול במישור ביקוש היצע הצגה גראפית ואלגברית האינד מונופול 1 מבוא מונופול - נושאים הסיבות להיווצרות מונופול בלעדיות, פטנט, זיכיונות ייצור, מונופול טבעי בעיית המונופול במישור ביקוש היצע הצגה גראפית ואלגברית האינדקס של לרנר, MARK UP PRICING בעיית המונופול

Διαβάστε περισσότερα

ההוצאה תהיה: RTS = ( L B, K B ( L A, K A TC C A L K K 15.03

ההוצאה תהיה: RTS = ( L B, K B ( L A, K A TC C A L K K 15.03 15.01 o פונקצית הוצאות של הטווח ה ארוך על מנת למקס ם רו וחי ם על פירמה לייצר תפו קה נתונה במינימום הוצא ות. נניח שמחירי גורמי הייצור קבועים. נגדיר עק ומת שוות הוצאה: כל הק ומבינציות של ו- שעבורן רמת ההוצאת

Διαβάστε περισσότερα

פתרון תרגיל מרחבים וקטורים. x = s t ולכן. ur uur נסמן, ur uur לכן U הוא. ur uur. ur uur

פתרון תרגיל מרחבים וקטורים. x = s t ולכן. ur uur נסמן, ur uur לכן U הוא. ur uur. ur uur פתרון תרגיל --- 5 מרחבים וקטורים דוגמאות למרחבים וקטורים שונים מושגים בסיסיים: תת מרחב צירוף לינארי x+ y+ z = : R ) בכל סעיף בדקו האם הוא תת מרחב של א } = z = {( x y z) R x+ y+ הוא אוסף הפתרונות של המערכת

Διαβάστε περισσότερα

פונקציית ההוצאות המשך היצע הפירמה מערכות ביקוש והיצע

פונקציית ההוצאות המשך היצע הפירמה מערכות ביקוש והיצע פונקציית ההוצאות המשך היצע הפירמה מערכות ביקוש והיצע הוצאות בטווח הקצר והארוך טווח קצר חלק מגורמי הייצור קבועים טווח ארוך כל גורמי הייצור משתנים בטווח הקצר ישנן הוצאות שאינן תלויות ברמת התפוקה ונובעות

Διαβάστε περισσότερα

הכנסה במוצרים היצע העבודה ופנאי תצרוכת על פני זמן נושאי השיעור קו התקציב, פונקציות הביקוש, היצע וביקוש הפרט סטאטיקה השוואתית

הכנסה במוצרים היצע העבודה ופנאי תצרוכת על פני זמן נושאי השיעור קו התקציב, פונקציות הביקוש, היצע וביקוש הפרט סטאטיקה השוואתית הכנסה במוצרים היצע העבודה ופנאי תצרוכת על פני זמן נושאי השיעור הכנסה במוצרים קו התקציב פונקציות הביקוש היצע וביקוש הפרט סטאטיקה השוואתית היצע העבודה ופנאי קו התקציב היצע העבודה תרחישים שונים תצרוכת על

Διαβάστε περισσότερα

גמישויות. x p Δ p x נקודתית. 1,1

גמישויות. x p Δ p x נקודתית. 1,1 גמישויות הגמישות מודדת את רגישות הכמות המבוקשת ממצרך כלשהוא לשינויים במחירו, במחירי מצרכים אחרים ובהכנסה על-מנת לנטרל את השפעת יחידות המדידה, נשתמש באחוזים על-מנת למדוד את מידת השינויים בדרך כלל הגמישות

Διαβάστε περισσότερα

הכנסה במוצרים היצע העבודה ופנאי

הכנסה במוצרים היצע העבודה ופנאי הכנסה במוצרים היצע העבודה ופנאי נושאי השיעור הכנסה במוצרים קו התקציב פונקציות הביקוש היצע הפרט סטאטיקה השוואתית היצע העבודה ופנאי קו התקציב היצע העבודה תרחישים שונים דיון קצר האם מודל ההכנסה במוצרים סביר?

Διαβάστε περισσότερα

תרגיל 13 משפטי רול ולגראנז הערות

תרגיל 13 משפטי רול ולגראנז הערות Mthemtics, Summer 20 / Exercise 3 Notes תרגיל 3 משפטי רול ולגראנז הערות. האם קיים פתרון למשוואה + x e x = בקרן )?(0, (רמז: ביחרו x,f (x) = e x הניחו שיש פתרון בקרן, השתמשו במשפט רול והגיעו לסתירה!) פתרון

Διαβάστε περισσότερα

פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד

פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשעד פתרון תרגיל 5 מבוא ללוגיקה ותורת הקבוצות, סתיו תשע"ד 1. לכל אחת מן הפונקציות הבאות, קבעו אם היא חח"ע ואם היא על (הקבוצה המתאימה) (א) 3} {1, 2, 3} {1, 2, : f כאשר 1 } 1, 3, 3, 3, { 2, = f לא חח"ע: לדוגמה

Διαβάστε περισσότερα

Joseph Louis Francois Bertrand,

Joseph Louis Francois Bertrand, תחרותביןמעטים ברטראנד קורנו שוב... תחרותמונופוליסטית עקומתביקוששבורה תחרותמיקום-מחיר הוטלינג קוישר סאלופ מעגל Joseh Louis Francois Bertrand 8-900 מודל ברטראנד תיאורהסביבה ההנחות מושגהפתרון חישובהפתרון

Διαβάστε περισσότερα

תרגול 1 חזרה טורי פורייה והתמרות אינטגרליות חורף תשע"ב זהויות טריגונומטריות

תרגול 1 חזרה טורי פורייה והתמרות אינטגרליות חורף תשעב זהויות טריגונומטריות תרגול חזרה זהויות טריגונומטריות si π α) si α π α) α si π π ), Z si α π α) t α cot π α) t α si α cot α α α si α si α + α siα ± β) si α β ± α si β α ± β) α β si α si β si α si α α α α si α si α α α + α si

Διαβάστε περισσότερα

עקומת שווה עליות איזוקוסט Isocost

עקומת שווה עליות איזוקוסט Isocost עקומת שווה עליות איזוקוסט Isocost כפי שראינו בפרק הקודם, אומנם נוכל לראות את הבחירה האלטרנטיבית של היצרן אך לא נוכל לקבל תשובה מהו הייצור האופטימאלי של היצרן. ישנם גורמים טכניים רבים מידי כדי לקבל החלטה

Διαβάστε περισσότερα

רחת 3 קרפ ( שוקיבה תמוקע)שוקיבה תיצקנופ

רחת 3 קרפ ( שוקיבה תמוקע)שוקיבה תיצקנופ - 41 - פרק ג' התנהגות צרכן פונקצית הביקוש(עקומת הביקוש ( - 42 - פרק 3: תחרות משוכללת: התנהגות צרכן מתארת את הקשר שבין כמות מבוקשת לבין מחיר השוק. שיפועה השלילי של עקומת הביקוש ממחיש את הקשר ההפוך הקיים

Διαβάστε περισσότερα

שאלה 1 V AB פתרון AB 30 R3 20 R

שאלה 1 V AB פתרון AB 30 R3 20 R תרגילים בתורת החשמל כתה יג שאלה א. חשב את המתח AB לפי משפט מילמן. חשב את הזרם בכל נגד לפי המתח שקיבלת בסעיף א. A 60 0 8 0 0.A B 8 60 0 0. AB 5. v 60 AB 0 0 ( 5.) 0.55A 60 א. פתרון 0 AB 0 ( 5.) 0 0.776A

Διαβάστε περισσότερα

Charles Augustin COULOMB ( ) קולון חוק = K F E המרחק סטט-קולון.

Charles Augustin COULOMB ( ) קולון חוק = K F E המרחק סטט-קולון. Charles Augustin COULOMB (1736-1806) קולון חוק חוקקולון, אשרנקראעלשםהפיזיקאיהצרפתישארל-אוגוסטיןדהקולוןשהיהאחדהראשוניםשחקרבאופןכמותיאתהכוחותהפועלים ביןשניגופיםטעונים. מדידותיוהתבססועלמיתקןהנקראמאזניפיתול.

Διαβάστε περισσότερα

תורת המחירים א תשע"ב

תורת המחירים א תשעב תורת המחירים א תשע"ב חוברת תרגילים הקמפוס האקדמי אחווה מרצה: ד"ר ניר דגן התרגילים בחוברת נכתבו ע"י פרופ' דוד וטשטיין ומרצים נוספים מהקמפוס האקדמי אחווה ואוניברסיטת בן-גוריון ו- תרגיל 1 העדפות הצרכן ומגבלת

Διαβάστε περισσότερα

אוסף תרגילים בקורס "מבוא לכלכלה למהנדסים" (51605)

אוסף תרגילים בקורס מבוא לכלכלה למהנדסים (51605) .1 אוסף תרגילים בקורס "מבוא לכלכלה למהנדסים" (51605) חלק א' תרגילי כיתה עקומת התמורה, הוצאה אלטרנטיבית 1.1 במשק "המילניום השלישי" קיימים שלושה סוגי פועלים. סוג א' (מסוג זה ישנם פועלים) שכל אחד מהם מסוגל

Διαβάστε περισσότερα

סיכום- בעיות מינימוםמקסימום - שאלון 806

סיכום- בעיות מינימוםמקסימום - שאלון 806 סיכום- בעיות מינימוםמקסימום - שאלון 806 בבעיותמינימום מקסימוםישלחפשאתנקודותהמינימוםהמוחלטוהמקסימוםהמוחלט. בשאלות מינימוםמקסימוםחובהלהראותבעזרתטבלה אובעזרתנגזרתשנייהשאכן מדובר עלמינימוםאומקסימום. לצורךקיצורהתהליך,

Διαβάστε περισσότερα

= 2. + sin(240 ) = = 3 ( tan(α) = 5 2 = sin(α) = sin(α) = 5. os(α) = + c ot(α) = π)) sin( 60 ) sin( 60 ) sin(

= 2. + sin(240 ) = = 3 ( tan(α) = 5 2 = sin(α) = sin(α) = 5. os(α) = + c ot(α) = π)) sin( 60 ) sin( 60 ) sin( א. s in(0 c os(0 s in(60 c os(0 s in(0 c os(0 s in(0 c os(0 s in(0 0 s in(70 מתאים לזהות של cos(θsin(φ : s in(θ φ s in(θcos(φ sin ( π cot ( π cos ( 4πtan ( 4π sin ( π cos ( π sin ( π cos ( 4π sin ( 4π

Διαβάστε περισσότερα

[ ] Observability, Controllability תרגול 6. ( t) t t קונטרולבילית H למימדים!!) והאובז' דוגמא: x. נשתמש בעובדה ש ) SS rank( S) = rank( עבור מטריצה m

[ ] Observability, Controllability תרגול 6. ( t) t t קונטרולבילית H למימדים!!) והאובז' דוגמא: x. נשתמש בעובדה ש ) SS rank( S) = rank( עבור מטריצה m Observabiliy, Conrollabiliy תרגול 6 אובזרווביליות אם בכל רגע ניתן לשחזר את ( (ומכאן גם את המצב לאורך זמן, מתוך ידיעת הכניסה והיציאה עד לרגע, וזה עבור כל צמד כניסה יציאה, אז המערכת אובזרוובילית. קונטרולביליות

Διαβάστε περισσότερα

ל הזכויות שמורות לדפנה וסטרייך

ל הזכויות שמורות לדפנה וסטרייך מרובע שכל זוג צלעות נגדיות בו שוות זו לזו נקרא h באיור שלעיל, הצלעות ו- הן צלעות נגדיות ומתקיים, וכן הצלעות ו- הן צלעות נגדיות ומתקיים. תכונות ה כל שתי זוויות נגדיות שוות זו לזו. 1. כל שתי צלעות נגדיות

Διαβάστε περισσότερα

סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות

סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות סיכום בנושא של דיפרנציאביליות ונגזרות כיווניות 25 בדצמבר 2016 תזכורת: תהי ) n f ( 1, 2,..., פונקציה המוגדרת בסביבה של f. 0 גזירה חלקית לפי משתנה ) ( = 0, אם קיים הגבול : 1 0, 2 0,..., בנקודה n 0 i f(,..,n,).lim

Διαβάστε περισσότερα

סיכום חקירת משוואות מהמעלה הראשונה ומהמעלה השנייה פרק זה הינו חלק מסיכום כולל לשאלון 005 שנכתב על-ידי מאיר בכור

סיכום חקירת משוואות מהמעלה הראשונה ומהמעלה השנייה פרק זה הינו חלק מסיכום כולל לשאלון 005 שנכתב על-ידי מאיר בכור סיכום חקירת משוואות מהמעלה הראשונה ומהמעלה השנייה פרק זה הינו חלק מסיכום כולל לשאלון 5 שנכתב על-ידי מאיר בכור. חקירת משוואה מהמעלה הראשונה עם נעלם אחד = הצורה הנורמלית של המשוואה, אליה יש להגיע, היא: b

Διαβάστε περισσότερα

gcd 24,15 = 3 3 =

gcd 24,15 = 3 3 = מחלק משותף מקסימאלי משפט אם gcd a, b = g Z אז קיימים x, y שלמים כך ש.g = xa + yb במלים אחרות, אם ה כך ש.gcd a, b = xa + yb gcd,a b של שני משתנים הוא מספר שלם, אז קיימים שני מקדמים שלמים כאלה gcd 4,15 =

Διαβάστε περισσότερα

יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012)

יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012) יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012) דף פתרונות 6 נושא: תחשיב הפסוקים: הפונקציה,val גרירה לוגית, שקילות לוגית 1. כיתבו טבלאות אמת לפסוקים הבאים: (ג) r)).((p q) r) ((p r) (q p q r (p

Διαβάστε περισσότερα

תרגיל 7 פונקציות טריגונומטריות הערות

תרגיל 7 פונקציות טריגונומטריות הערות תרגיל 7 פונקציות טריגונומטריות הערות. פתרו את המשוואות הבאות. לא מספיק למצוא פתרון אחד יש למצוא את כולם! sin ( π (א) = x sin (ב) = x cos (ג) = x tan (ד) = x) (ה) = tan x (ו) = 0 x sin (x) + sin (ז) 3 =

Διαβάστε περισσότερα

תרגול מס' 6 פתרון מערכת משוואות ליניארית

תרגול מס' 6 פתרון מערכת משוואות ליניארית אנליזה נומרית 0211 סתיו - תרגול מס' 6 פתרון מערכת משוואות ליניארית נרצה לפתור את מערכת המשוואות יהי פתרון מקורב של נגדיר את השארית: ואת השגיאה: שאלה 1: נתונה מערכת המשוואות הבאה: הערך את השגיאה היחסית

Διαβάστε περισσότερα

לדוגמה: במפורט: x C. ,a,7 ו- 13. כלומר בקיצור

לדוגמה: במפורט: x C. ,a,7 ו- 13. כלומר בקיצור הרצאה מס' 1. תורת הקבוצות. מושגי יסוד בתורת הקבוצות.. 1.1 הקבוצה ואיברי הקבוצות. המושג קבוצה הוא מושג בסיסי במתמטיקה. אין מושגים בסיסים יותר, אשר באמצעותם הגדרתו מתאפשרת. הניסיון והאינטואיציה עוזרים להבין

Διαβάστε περισσότερα

ויעילות הוצאת * החומר * 1

ויעילות הוצאת * החומר * 1 ויעילות מוצרים ציבוריים פרופסור שמואל ניצן הוצאת העדפה ובחירה חברתית", בספר: " על פרק טט' ברובו מבוסס חומר זהה *.2007 האוניברסיטה הפתוחה, הפתוחה) הזכויות שמורות לאונילאוניברסיטה (כל הקדמה: נושאי הדיון

Διαβάστε περισσότερα

תרגיל 1 נתונים = 2 ו- = 1

תרגיל 1 נתונים = 2 ו- = 1 תורת המחירים א' 213-66 תרגיל 1 מרחב האפשרויות Y ו- X צרכן מוציא את כל הכנסתו הכספית ) 200 = I )על שני מוצרים בלבד,, ורואה לפניו מחירים. P Y P X נתונים = 2 ו- = 1 תאר את מרחב אפשרויות הצריכה של הצרכן בכל

Διαβάστε περισσότερα

אי וודאות המשך תורת היצרן טכנולוגיה ופונק' ייצור

אי וודאות המשך תורת היצרן טכנולוגיה ופונק' ייצור אי וודאות המשך תורת היצרן טכנולוגיה ופונק' ייצור 1 2 בעיית הביטוח פתרון אלגברי ב "מישור העושר" בעיית המקסימיזציהשהפרט פותר הינה : Max p 1u(10 -γk+k)+p 2u(40 -γk) K והשוואה תנאי הסדר הראשון מתקבל מגזירה

Διαβάστε περισσότερα

מתמטיקה בדידה תרגול מס' 5

מתמטיקה בדידה תרגול מס' 5 מתמטיקה בדידה תרגול מס' 5 נושאי התרגול: פונקציות 1 פונקציות הגדרה 1.1 פונקציה f מ A (התחום) ל B (הטווח) היא קבוצה חלקית של A B המקיימת שלכל a A קיים b B יחיד כך ש. a, b f a A.f (a) = ιb B. a, b f או, בסימון

Διαβάστε περισσότερα

גבול ורציפות של פונקציה סקלרית שאלות נוספות

גבול ורציפות של פונקציה סקלרית שאלות נוספות 08 005 שאלה גבול ורציפות של פונקציה סקלרית שאלות נוספות f ( ) f ( ) g( ) f ( ) ו- lim f ( ) ו- ( ) (00) lim ( ) (00) f ( בסביבת הנקודה (00) ) נתון: מצאו ) lim g( ( ) (00) ננסה להיעזר בכלל הסנדביץ לשם כך

Διαβάστε περισσότερα

תרגול משפט הדיברגנץ. D תחום חסום וסגור בעל שפה חלקה למדי D, ותהי F פו' וקטורית :F, R n R n אזי: נוסחת גרין I: הוכחה: F = u v כאשר u פו' סקלרית:

תרגול משפט הדיברגנץ. D תחום חסום וסגור בעל שפה חלקה למדי D, ותהי F פו' וקטורית :F, R n R n אזי: נוסחת גרין I: הוכחה: F = u v כאשר u פו' סקלרית: משפט הדיברגנץ תחום חסום וסגור בעל שפה חלקה למדי, ותהי F פו' וקטורית :F, R n R n אזי: div(f ) dxdy = F, n dr נוסחת גרין I: uδv dxdy = u v n dr u, v dxdy הוכחה: F = (u v v, u x y ) F = u v כאשר u פו' סקלרית:

Διαβάστε περισσότερα

ניהול תמיכה מערכות שלבים: DFfactor=a-1 DFt=an-1 DFeror=a(n-1) (סכום _ הנתונים ( (מספר _ חזרות ( (מספר _ רמות ( (סכום _ ריבועי _ כל _ הנתונים (

ניהול תמיכה מערכות שלבים: DFfactor=a-1 DFt=an-1 DFeror=a(n-1) (סכום _ הנתונים ( (מספר _ חזרות ( (מספר _ רמות ( (סכום _ ריבועי _ כל _ הנתונים ( תכנון ניסויים כאשר קיימת אישביעות רצון מהמצב הקיים (למשל כשלים חוזרים בבקרת תהליכים סטטיסטית) נחפש דרכים לשיפור/ייעול המערכת. ניתן לבצע ניסויים על גורם בודד, שני גורמים או יותר. ניסויים עם גורם בודד: נבצע

Διαβάστε περισσότερα

אלגברה מודרנית פתרון שיעורי בית 6

אלגברה מודרנית פתרון שיעורי בית 6 אלגברה מודרנית פתרון שיעורי בית 6 15 בינואר 016 1. יהי F שדה ויהיו q(x) p(x), שני פולינומים מעל F. מצאו פולינומים R(x) S(x), כך שמתקיים R(x),p(x) = S(x)q(x) + כאשר deg(q),deg(r) < עבור המקרים הבאים: (תזכורת:

Διαβάστε περισσότερα

TECHNION Israel Institute of Technology, Faculty of Mechanical Engineering מבוא לבקרה (034040) גליון תרגילי בית מס 5 ציור 1: דיאגרמת הבלוקים

TECHNION Israel Institute of Technology, Faculty of Mechanical Engineering מבוא לבקרה (034040) גליון תרגילי בית מס 5 ציור 1: דיאגרמת הבלוקים TECHNION Iael Intitute of Technology, Faculty of Mechanical Engineeing מבוא לבקרה (034040) גליון תרגילי בית מס 5 d e C() y P() - ציור : דיאגרמת הבלוקים? d(t) ו 0 (t) (t),c() 3 +,P() + ( )(+3) שאלה מס נתונה

Διαβάστε περισσότερα

דף פתרונות 7 נושא: תחשיב הפסוקים: צורה דיסיונקטיבית נורמלית, מערכת קשרים שלמה, עקביות

דף פתרונות 7 נושא: תחשיב הפסוקים: צורה דיסיונקטיבית נורמלית, מערכת קשרים שלמה, עקביות יסודות לוגיקה ותורת הקבוצות למערכות מידע (סמסטר ב 2012) דף פתרונות 7 נושא: תחשיב הפסוקים: צורה דיסיונקטיבית נורמלית, מערכת קשרים שלמה, עקביות 1. מצאו צורה דיסיונקטיבית נורמלית קנונית לפסוקים הבאים: (ג)

Διαβάστε περισσότερα

אלגברה ליניארית 1 א' פתרון 2

אלגברה ליניארית 1 א' פתרון 2 אלגברה ליניארית א' פתרון 3 4 3 3 7 9 3. נשתמש בכתיבה בעזרת מטריצה בכל הסעיפים. א. פתרון: 3 3 3 3 3 3 9 אז ישנו פתרון יחיד והוא = 3.x =, x =, x 3 3 הערה: אפשר גם לפתור בדרך קצת יותר ארוכה, אבל מבלי להתעסק

Διαβάστε περισσότερα

תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 315, מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן

תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשעד, מיום 0/8/0610 שאלונים: 315, מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן תשובות מלאות לבחינת הבגרות במתמטיקה מועד ג' תשע"ד, מיום 0/8/0610 שאלונים: 315, 635865 מוצע על ידי בית הספר לבגרות ולפסיכומטרי של אבירם פלדמן שאלה מספר 1 נתון: 1. סדרה חשבונית שיש בה n איברים...2 3. האיבר

Διαβάστε περισσότερα

קיום ויחידות פתרונות למשוואות דיפרנציאליות

קיום ויחידות פתרונות למשוואות דיפרנציאליות קיום ויחידות פתרונות למשוואות דיפרנציאליות 1 מוטיבציה למשפט הקיום והיחידות אנו יודעים לפתור משוואות דיפרנציאליות ממחלקות מסוימות, כמו משוואות פרידות או משוואות לינאריות. עם זאת, קל לכתוב משוואה דיפרנציאלית

Διαβάστε περισσότερα

שדות תזכורת: פולינום ממעלה 2 או 3 מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה. שקיימים 5 מספרים שלמים שונים , ראשוני. שעבורם

שדות תזכורת: פולינום ממעלה 2 או 3 מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה. שקיימים 5 מספרים שלמים שונים , ראשוני. שעבורם תזכורת: פולינום ממעלה או מעל שדה הוא פריק אם ורק אם יש לו שורש בשדה p f ( m i ) = p m1 m5 תרגיל: נתון עבור x] f ( x) Z[ ראשוני שקיימים 5 מספרים שלמים שונים שעבורם p x f ( x ) f ( ) = נניח בשלילה ש הוא

Διαβάστε περισσότερα

תורת המחירים ב' 57308

תורת המחירים ב' 57308 תורת המחירים ב' 57308 חיים שחור סיכומי הרצאות של פרופ' דוד ג'נסוב י"א אדר תשע"ב (שעור ) ברוכים הבאים. ליעד יהיה אחראי על השליש האחרון של הקורס. הקורס הוא הרחבה של מחירים א'. אם היה לכם קשה, מומלץ שתעברו

Διαβάστε περισσότερα

צעד ראשון להצטיינות מבוא: קבוצות מיוחדות של מספרים ממשיים

צעד ראשון להצטיינות מבוא: קבוצות מיוחדות של מספרים ממשיים מבוא: קבוצות מיוחדות של מספרים ממשיים קבוצות של מספרים ממשיים צעד ראשון להצטיינות קבוצה היא אוסף של עצמים הנקראים האיברים של הקבוצה אנו נתמקד בקבוצות של מספרים ממשיים בדרך כלל מסמנים את הקבוצה באות גדולה

Διαβάστε περισσότερα

( )( ) ( ) f : B C היא פונקציה חח"ע ועל מכיוון שהיא מוגדרת ע"י. מכיוון ש f היא פונקציהאז )) 2 ( ( = ) ( ( )) היא פונקציה חח"ע אז ועל פי הגדרת

( )( ) ( ) f : B C היא פונקציה חחע ועל מכיוון שהיא מוגדרת עי. מכיוון ש f היא פונקציהאז )) 2 ( ( = ) ( ( )) היא פונקציה חחע אז ועל פי הגדרת הרצאה 7 יהיו :, : C פונקציות, אז : C חח"ע ו חח"ע,אז א אם על ו על,אז ב אם ( על פי הגדרת ההרכבה )( x ) = ( )( x x, כךש ) x א יהיו = ( x ) x חח"ע נקבל ש מכיוון ש חח"ע נקבל ש מכיוון ש ( b) = c כך ש b ( ) (

Διαβάστε περισσότερα

אינפי - 1 תרגול בינואר 2012

אינפי - 1 תרגול בינואר 2012 אינפי - תרגול 4 3 בינואר 0 רציפות במידה שווה הגדרה. נאמר שפונקציה f : D R היא רציפה במידה שווה אם לכל > 0 ε קיים. f(x) f(y) < ε אז x y < δ אם,x, y D כך שלכל δ > 0 נביט במקרה בו D הוא קטע (חסום או לא חסום,

Διαβάστε περισσότερα

לוגיקה ותורת הקבוצות פתרון תרגיל בית 8 חורף תשע"ו ( ) ... חלק ראשון: שאלות שאינן להגשה נפריד למקרים:

לוגיקה ותורת הקבוצות פתרון תרגיל בית 8 חורף תשעו ( ) ... חלק ראשון: שאלות שאינן להגשה נפריד למקרים: לוגיקה ותורת הקבוצות פתרון תרגיל בית 8 חורף תשע"ו ( 2016 2015 )............................................................................................................. חלק ראשון: שאלות שאינן להגשה.1

Διαβάστε περισσότερα

Logic and Set Theory for Comp. Sci.

Logic and Set Theory for Comp. Sci. 234293 - Logic and Set Theory for Comp. Sci. Spring 2008 Moed A Final [partial] solution Slava Koyfman, 2009. 1 שאלה 1 לא נכון. דוגמא נגדית מפורשת: יהיו } 2,(p 1 p 2 ) (p 2 p 1 ).Σ 2 = {p 2 p 1 },Σ 1 =

Διαβάστε περισσότερα

פתרונות , כך שאי השוויון המבוקש הוא ברור מאליו ולכן גם קודמו תקף ובכך מוכחת המונוטוניות העולה של הסדרה הנתונה.

פתרונות , כך שאי השוויון המבוקש הוא ברור מאליו ולכן גם קודמו תקף ובכך מוכחת המונוטוניות העולה של הסדרה הנתונה. בחינת סיווג במתמטיקה.9.017 פתרונות.1 סדרת מספרים ממשיים } n {a נקראת מונוטונית עולה אם לכל n 1 מתקיים n+1.a n a האם הסדרה {n a} n = n היא מונוטונית עולה? הוכיחו תשובתכם. הסדרה } n a} היא אכן מונוטונית

Διαβάστε περισσότερα

אלגברה לינארית (1) - פתרון תרגיל 11

אלגברה לינארית (1) - פתרון תרגיל 11 אלגברה לינארית ( - פתרון תרגיל דרגו את המטריצות הבאות לפי אלגוריתם הדירוג של גאוס (א R R4 R R4 R=R+R R 3=R 3+R R=R+R R 3=R 3+R 9 4 3 7 (ב 9 4 3 7 7 4 3 9 4 3 4 R 3 R R3=R3 R R 4=R 4 R 7 4 3 9 7 4 3 8 6

Διαβάστε περισσότερα

תרגול פעולות מומצאות 3

תרגול פעולות מומצאות 3 תרגול פעולות מומצאות. ^ = ^ הפעולה החשבונית סמן את הביטוי הגדול ביותר:. ^ ^ ^ π ^ הפעולה החשבונית c) #(,, מחשבת את ממוצע המספרים בסוגריים.. מהי תוצאת הפעולה (.7,.0,.)#....0 הפעולה החשבונית משמשת חנות גדולה

Διαβάστε περισσότερα

נגזר ות צולבות F KK = 0 K MP יריבים אדישים מסייעים MP = = L MP X=F(L,K) שני: L K X =

נגזר ות צולבות F KK = 0 K MP יריבים אדישים מסייעים MP = = L MP X=F(L,K) שני: L K X = 4. < > בניתוח של הטווח הארוך נניח שהפירמה מייצרת מוצר באמצעות שני גורמי יצור משתנים: עבודה ומכונות. נגדיר את פונ קצית הייצור: התפוקה המקסימאלית שניתן לייצור באמצעות צירוף, של תשומות: פונקצית הייצור בטווח

Διαβάστε περισσότερα

כלכלה בדרך הקלה ספר תרגול במיקרו א'

כלכלה בדרך הקלה ספר תרגול במיקרו א' כלכלה בדרך הקלה ספר תרגול במיקרו א' סטודנטים יקרים לפניכם ספר תרגילים בקורס מיקרו א'. הספר הוא חלק מפרויקט חדשני וראשון מסוגו בארץ במקצוע זה, המועבר ברשת האינטרנט.On-line הקורס באתר כולל פתרונות מלאים

Διαβάστε περισσότερα

PDF created with pdffactory trial version

PDF created with pdffactory trial version הקשר בין שדה חשמלי לפוטנציאל חשמלי E נחקור את הקשר, עבור מקרה פרטי, בו יש לנו שדה חשמלי קבוע. נתון שדה חשמלי הקבוע במרחב שגודלו שווה ל. E נסמן שתי נקודות לאורך קו שדה ו המרחק בין הנקודות שווה ל x. המתח

Διαβάστε περισσότερα

מתמטיקה בדידה תרגול מס' 12

מתמטיקה בדידה תרגול מס' 12 מתמטיקה בדידה תרגול מס' 2 נושאי התרגול: נוסחאות נסיגה נוסחאות נסיגה באמצעות פונקציות יוצרות נוסחאות נסיגה באמצעות פולינום אופייני נוסחאות נסיגה לעתים מפורש לבעיה קומבינטורית אינו ידוע, אך יחסית קל להגיע

Διαβάστε περισσότερα

I. גבולות. x 0. מתקיים L < ε. lim אם ורק אם. ( x) = 1. lim = 1. lim. x x ( ) הפונקציה נגזרות Δ 0. x Δx

I. גבולות. x 0. מתקיים L < ε. lim אם ורק אם. ( x) = 1. lim = 1. lim. x x ( ) הפונקציה נגזרות Δ 0. x Δx דפי נוסחאות I גבולות נאמר כי כך שלכל δ קיים > ε לכל > lim ( ) L המקיים ( ) מתקיים L < ε הגדרת הגבול : < < δ lim ( ) lim ורק ( ) משפט הכריך (סנדוויץ') : תהיינה ( ( ( )g ( )h פונקציות המוגדרות בסביבה נקובה

Διαβάστε περισσότερα

brookal/logic.html לוגיקה מתמטית תרגיל אלון ברוק

brookal/logic.html לוגיקה מתמטית תרגיל אלון ברוק יום א 14 : 00 15 : 00 בניין 605 חדר 103 http://u.cs.biu.ac.il/ brookal/logic.html לוגיקה מתמטית תרגיל אלון ברוק 29/11/2017 1 הגדרת קבוצת הנוסחאות הבנויות היטב באינדוקציה הגדרה : קבוצת הנוסחאות הבנויות

Διαβάστε περισσότερα

The No Arbitrage Theorem for Factor Models ג'רמי שיף - המחלקה למתמטיקה, אוניברסיטת בר-אילן

The No Arbitrage Theorem for Factor Models ג'רמי שיף - המחלקה למתמטיקה, אוניברסיטת בר-אילן .. The No Arbitrage Theorem for Factor Models ג'רמי שיף - המחלקה למתמטיקה, אוניברסיטת בר-אילן 03.01.16 . Factor Models.i = 1,..., n,r i נכסים, תשואות (משתנים מקריים) n.e[f j ] נניח = 0.j = 1,..., d,f j

Διαβάστε περισσότερα

כלכלה בדרך הקלה ספר תרגול בתורת המחירים א'

כלכלה בדרך הקלה ספר תרגול בתורת המחירים א' כלכלה בדרך הקלה ספר תרגול בתורת המחירים א' סטודנטים יקרים לפניכם ספר תרגילים בקורס תורת המחירים א' (נקרא גם מיקרו א' או תיאוריות ויישומים מיקרו). הספר הוא חלק מפרויקט חדשני וראשון מסוגו בארץ במקצוע זה,

Διαβάστε περισσότερα

קבל מורכב משני מוליכים, אשר אינם במגע אחד עם השני, בכל צורה שהיא. כאשר קבל טעון, על כל "לוח" יש את אותה כמות מטען, אך הסימנים הם הפוכים.

קבל מורכב משני מוליכים, אשר אינם במגע אחד עם השני, בכל צורה שהיא. כאשר קבל טעון, על כל לוח יש את אותה כמות מטען, אך הסימנים הם הפוכים. קבל קבל מורכב משני מוליכים, אשר אינם במגע אחד עם השני, בכל צורה שהיא. כאשר קבל טעון, על כל "לוח" יש את אותה כמות מטען, אך הסימנים הם הפוכים. על לוח אחד מטען Q ועל לוח שני מטען Q. הפוטנציאל על כל לוח הוא

Διαβάστε περισσότερα

אלגברה לינארית מטריצות מטריצות הפיכות

אלגברה לינארית מטריצות מטריצות הפיכות מטריצות + [( αij+ β ij ] m λ [ λα ij ] m λ [ αijλ ] m + + ( + +C + ( + C i C m q m q ( + C C + C C( + C + C λ( ( λ λ( ( λ (C (C ( ( λ ( + + ( λi ( ( ( k k i חיבור מכפלה בסקלר מכפלה בסקלר קומוטטיב אסוציאטיב

Διαβάστε περισσότερα

5 הדיחי םידבועל שוקיב

5 הדיחי םידבועל שוקיב מבוא לכלכלת עבודה יחידה 5 ביקוש לעובדים 5. הביקוש לעובדים 5. כללי עד כה עסקנו בהיצע העובדים בשוק העבודה ובחנו מספר שאלות מרכזיות מנקודת מבטו של הפרט הבודד: חלוקת זמנו של העובד בין פנאי ועבודה והגורמים

Διαβάστε περισσότερα

אוסף שאלות מס. 3 פתרונות

אוסף שאלות מס. 3 פתרונות אוסף שאלות מס. 3 פתרונות שאלה מצאו את תחום ההגדרה D R של כל אחת מהפונקציות הבאות, ושרטטו אותו במישור. f (x, y) = x + y x y, f 3 (x, y) = f (x, y) = xy x x + y, f 4(x, y) = xy x y f 5 (x, y) = 4x + 9y 36,

Διαβάστε περισσότερα

אוניברסיטת בן גוריון מבוא לכלכלה א' פתרונות התרגילים וסיכומי התרגולים תשע"ד מתרגל: נאור שימול

אוניברסיטת בן גוריון מבוא לכלכלה א' פתרונות התרגילים וסיכומי התרגולים תשעד מתרגל: נאור שימול אוניברסיטת בן גוריון מבוא לכלכלה א' פתרונות התרגילים וסיכומי התרגולים תשע"ד מתרגל: נאור שימול - תרגיל 1 עקומת תמורה והוצאות אלטרנטיביות שאלה 1 להלן נתונים על מספר נקודות הנמצאות על עקומת התמורה של מסעדה

Διαβάστε περισσότερα

David Hanhart א. הגדרות: אחרים. מה לייצר וכמה לייצר?

David Hanhart א. הגדרות: אחרים. מה לייצר וכמה לייצר? עותק זה הועלה לאתר אגודת הסטודנטים. אין להעלותו לאף אתר אחר או למכור אותו ללא אישור מפורש של המחבר. להערות מקצועיות או תיקונים, פנו לחברים שלכם שבאמת הולכים לשיעורים סיכום קורס מיקרו כלכלה: א. ב. ג. פרק

Διαβάστε περισσότερα

מתכנס בהחלט אם n n=1 a. k=m. k=m a k n n שקטן מאפסילון. אם קח, ניקח את ה- N שאנחנו. sin 2n מתכנס משום ש- n=1 n. ( 1) n 1

מתכנס בהחלט אם n n=1 a. k=m. k=m a k n n שקטן מאפסילון. אם קח, ניקח את ה- N שאנחנו. sin 2n מתכנס משום ש- n=1 n. ( 1) n 1 1 טורים כלליים 1. 1 התכנסות בהחלט מתכנס. מתכנס בהחלט אם n a הגדרה.1 אומרים שהטור a n משפט 1. טור מתכנס בהחלט הוא מתכנס. הוכחה. נוכיח עם קריטריון קושי. יהי אפסילון גדול מ- 0, אז אנחנו יודעים ש- n N n>m>n

Διαβάστε περισσότερα

מתמטיקה שאלון ו' נקודות. חשבון דיפרנציאלי ואינטגרלי, טריגונומטריה שימוש במחשבון גרפי או באפשרויות התכנות עלול לגרום לפסילת הבחינה.

מתמטיקה שאלון ו' נקודות. חשבון דיפרנציאלי ואינטגרלי, טריגונומטריה שימוש במחשבון גרפי או באפשרויות התכנות עלול לגרום לפסילת הבחינה. בגרות לבתי ספר על-יסודיים מועד הבחינה: תשס"ח, מספר השאלון: 05006 נספח:דפי נוסחאות ל- 4 ול- 5 יחידות לימוד מתמטיקה שאלון ו' הוראות לנבחן משך הבחינה: שעה ושלושה רבעים. מבנה השאלון ומפתח ההערכה: בשאלון זה

Διαβάστε περισσότερα

אלגברה ליניארית (1) - תרגיל 6

אלגברה ליניארית (1) - תרגיל 6 אלגברה ליניארית (1) - תרגיל 6 התרגיל להגשה עד יום חמישי (12.12.14) בשעה 16:00 בתא המתאים בבניין מתמטיקה. נא לא לשכוח פתקית סימון. 1. עבור כל אחד מתת המרחבים הבאים, מצאו בסיס ואת המימד: (א) 3)} (0, 6, 3,,

Διαβάστε περισσότερα

הפתק מבוא לכלכלה סיכום הקורס. ייתכנו טעויות במסמך. אודה למי שיסב את תשומת לבי אליהן:

הפתק מבוא לכלכלה סיכום הקורס.  ייתכנו טעויות במסמך. אודה למי שיסב את תשומת לבי אליהן: 94591 מבוא לכלכלה, סיכום הקורס, עמוד 1 מתוך 82 הפתק www.hapetek.co.il מבוא לכלכלה 94591 סיכום הקורס ייתכנו טעויות במסמך. אודה למי שיסב את תשומת לבי אליהן: avi.bandel@gmail.com 94591 מבוא לכלכלה, סיכום

Διαβάστε περισσότερα

דיאגמת פאזת ברזל פחמן

דיאגמת פאזת ברזל פחמן דיאגמת פאזת ברזל פחמן הריכוז האוטקטי הריכוז האוטקטוידי גבול המסיסות של פריט היווצרות פרליט מיקרו-מבנה של החומר בפלדה היפר-אוטקטואידית והיפו-אוטקטוידית. ככל שמתקרבים יותר לריכוז האוטקטואידי, מקבלים מבנה

Διαβάστε περισσότερα

מתמטיקה בדידה תרגול מס' 2

מתמטיקה בדידה תרגול מס' 2 מתמטיקה בדידה תרגול מס' 2 נושאי התרגול: כמתים והצרנות. משתנים קשורים וחופשיים. 1 כמתים והצרנות בתרגול הקודם עסקנו בתחשיב הפסוקים, שבו הנוסחאות שלנו היו מורכבות מפסוקים יסודיים (אשר קיבלו ערך T או F) וקשרים.

Διαβάστε περισσότερα

c ארזים 26 בינואר משפט ברנסייד פתירה. Cl (z) = G / Cent (z) = q b r 2 הצגות ממשיות V = V 0 R C אזי מקבלים הצגה מרוכבת G GL R (V 0 ) GL C (V )

c ארזים 26 בינואר משפט ברנסייד פתירה. Cl (z) = G / Cent (z) = q b r 2 הצגות ממשיות V = V 0 R C אזי מקבלים הצגה מרוכבת G GL R (V 0 ) GL C (V ) הצגות של חבורות סופיות c ארזים 6 בינואר 017 1 משפט ברנסייד משפט 1.1 ברנסייד) יהיו p, q ראשוניים. תהי G חבורה מסדר.a, b 0,p a q b אזי G פתירה. הוכחה: באינדוקציה על G. אפשר להניח כי > 1 G. נבחר תת חבורה

Διαβάστε περισσότερα

"קשר-חם" : לקידום שיפור וריענון החינוך המתמטי

קשר-חם : לקידום שיפור וריענון החינוך המתמטי הטכניון - מכון טכנולוגי לישראל המחלקה להוראת הטכנולוגיה והמדעים "קשר-חם" : לקידום שיפור וריענון החינוך המתמטי נושא: חקירת משוואות פרמטריות בעזרת גרפים הוכן ע"י: אביבה ברש. תקציר: בחומר מוצגת דרך לחקירת

Διαβάστε περισσότερα

מבוא לכלכלה מיקרו כלכלה

מבוא לכלכלה מיקרו כלכלה חלק 1 מבוא לכלכלה מיקרו כלכלה סיכום החומר בקורס "מבוא לכלכלה" בטכניון (חלק 1) סיכם: אור גלעד המרצה: ד"ר מירה ברון מסמך זה הורד מהאתר. אין להפיץ מסמך זה במדיה כלשהי, ללא אישור מפורש מאת המחבר. מחברי המסמך

Διαβάστε περισσότερα

Copyright Dan Ben-David, All Rights Reserved. דן בן-דוד אוניברסיטת תל-אביב נושאים 1. מבוא 5. אינפלציה

Copyright Dan Ben-David, All Rights Reserved. דן בן-דוד אוניברסיטת תל-אביב נושאים 1. מבוא 5. אינפלציה נושאים 1. מבוא 2. היצע קיינסיאני וקלאסי מאקרו בב' דן בן-דוד אוניברסיטת תל-אביב 3. המודל הקיינסיאני א. שוק המוצרים ב. שוק הכסף ג. מודל S-L במשק סגור ד. מודל S-L במשק פתוח שער חליפין נייד או קבוע עם או בלי

Διαβάστε περισσότερα

תרגול #5 כוחות (נורמל, חיכוך ומתיחות)

תרגול #5 כוחות (נורמל, חיכוך ומתיחות) תרגול #5 כוחות נורמל, חיכוך ומתיחות) 19 בנובמבר 013 רקע תיאורטי כח הוא מידה של אינטרקציה בין כל שני גופים. היחידות הפיסיקליות של כח הן ניוטון.[F ] = N חוקי ניוטון 1. חוק הפעולה והתגובה כאשר סך הכוחות כח

Διαβάστε περισσότερα

התפלגות χ: Analyze. Non parametric test

התפלגות χ: Analyze. Non parametric test מבחני חי בריבוע לבדיקת טיב התאמה דוגמא: זורקים קוביה 300 פעמים. להלן התוצאות שהתקבלו: 6 5 4 3 2 1 תוצאה 41 66 45 56 49 43 שכיחות 2 התפלגות χ: 0.15 התפלגות חי בריבוע עבור דרגות חופש שונות 0.12 0.09 0.06

Διαβάστε περισσότερα

Domain Relational Calculus דוגמאות. {<bn> dn(<dn, bn> likes dn = Yossi )}

Domain Relational Calculus דוגמאות. {<bn> dn(<dn, bn> likes dn = Yossi )} כללים ליצירת נוסחאות DRC תחשיב רלציוני על תחומים Domain Relational Calculus DRC הואהצהרתי, כמוSQL : מבטאיםבורקמהרוציםשתהיההתוצאה, ולא איךלחשבאותה. כלשאילתהב- DRC היאמהצורה )} i,{ F(x 1,x

Διαβάστε περισσότερα

s ק"מ קמ"ש מ - A A מ - מ - 5 p vp v=

s קמ קמש מ - A A מ - מ - 5 p vp v= את זמני הליכת הולכי הרגל עד הפגישות שלהם עם רוכב האופניים (שעות). בגרות ע מאי 0 מועד קיץ מבוטל שאלון 5006 מהירות - v קמ"ש t, א. () נסמן ב- p נכניס את הנתונים לטבלה מתאימה: רוכב אופניים עד הפגישה זמן -

Διαβάστε περισσότερα

טענה חשובה : העתקה לינארית הינה חד חד ערכית האפס ב- הוא הוקטור היחיד שמועתק לוקטור אפס של. נקבל מחד חד הערכיות כי בהכרח.

טענה חשובה : העתקה לינארית הינה חד חד ערכית האפס ב- הוא הוקטור היחיד שמועתק לוקטור אפס של. נקבל מחד חד הערכיות כי בהכרח. 1 תשע'א תירגול 8 אלגברה לינארית 1 טענה חשובה : העתקה לינארית הינה חד חד ערכית האפס ב- הוא הוקטור היחיד שמועתק לוקטור אפס של וקטור אם הוכחה: חד חד ערכית ויהי כך ש מכיוון שגם נקבל מחד חד הערכיות כי בהכרח

Διαβάστε περισσότερα

קבוצה היא שם כללי לתיאור אוסף כלשהו של איברים.

קבוצה היא שם כללי לתיאור אוסף כלשהו של איברים. א{ www.sikumuna.co.il מהי קבוצה? קבוצה היא שם כללי לתיאור אוסף כלשהו של איברים. קבוצה היא מושג יסודי במתמטיקה.התיאור האינטואיטיבי של קבוצה הוא אוסף של עצמים כלשהם. העצמים הנמצאים בקבוצה הם איברי הקבוצה.

Διαβάστε περισσότερα

פתרון תרגיל 6 ממשוואות למבנים אלגברה למדעי ההוראה.

פתרון תרגיל 6 ממשוואות למבנים אלגברה למדעי ההוראה. פתרון תרגיל 6 ממשוואות למבנים אלגברה למדעי ההוראה. 16 במאי 2010 נסמן את מחלקת הצמידות של איבר בחבורה G על ידי } g.[] { y : g G, y g כעת נניח כי [y] [] עבור שני איברים, y G ונוכיח כי [y].[] מאחר והחיתוך

Διαβάστε περισσότερα

חידה לחימום. כתבו תכappleית מחשב, המקבלת כקלט את M ו- N, מחליטה האם ברצוappleה להיות השחקן הפותח או השחקן השappleי, ותשחק כך שהיא תappleצח תמיד.

חידה לחימום. כתבו תכappleית מחשב, המקבלת כקלט את M ו- N, מחליטה האם ברצוappleה להיות השחקן הפותח או השחקן השappleי, ותשחק כך שהיא תappleצח תמיד. חידה לחימום ( M ש- N > (כך מספרים טבעיים Mו- N שappleי appleתוappleים בעלי אותה הזוגיות (שappleיהם זוגיים או שappleיהם אי - זוגיים). המספרים הטבעיים מ- Mעד Nמסודרים בשורה, ושappleי שחקappleים משחקים במשחק.

Διαβάστε περισσότερα

x a x n D f (iii) x n a ,Cauchy

x a x n D f (iii) x n a ,Cauchy גבולות ורציפות גבול של פונקציה בנקודה הגדרה: קבוצה אשר מכילה קטע פתוח שמכיל את a תקרא סביבה של a. קבוצה אשר מכילה קטע פתוח שמכיל את a אך לא מכילה את a עצמו תקרא סביבה מנוקבת של a. יהו a R ו f פונקציה מוגדרת

Διαβάστε περισσότερα

אלגוריתמים ללכסון מטריצות ואופרטורים

אלגוריתמים ללכסון מטריצות ואופרטורים אלגוריתמים ללכסון מטריצות ואופרטורים לכסון מטריצות יהי F שדה ו N n נאמר שמטריצה (F) A M n היא לכסינה אם היא דומה למטריצה אלכסונית כלומר, אם קיימת מטריצה הפיכה (F) P M n כך ש D P AP = כאשר λ λ 2 D = λ n

Διαβάστε περισσότερα

מכניקה אנליטית תרגול 6

מכניקה אנליטית תרגול 6 מכניקה אנליטית תרגול 6 1 אלימינציה של קואורדינטות ציקליות כאשר יש בבעיה קואורדינטה ציקלית אחת או יותר, לעתים נרצה לכתוב פעולה חדשה (או, באופן שקול, לגראנז'יאן חדש) אשר לא כולל את הקואורדינטות הללו, וממנו

Διαβάστε περισσότερα

אלקטרומגנטיות אנליטית תירגול #2 סטטיקה

אלקטרומגנטיות אנליטית תירגול #2 סטטיקה Analytical Electromagnetism Fall Semester 202-3 אלקטרומגנטיות אנליטית תירגול #2 סטטיקה צפיפויות מטען וזרם צפיפות מטען נפחית ρ מוגדרת כך שאינטגרל נפחי עליה נותן את המטען הכולל Q dv ρ היחידות של ρ הן מטען

Διαβάστε περισσότερα

משוואות רקורסיביות רקורסיה זו משוואה או אי שוויון אשר מתארת פונקציה בעזרת ערכי הפונקציה על ארגומנטים קטנים. למשל: יונתן יניב, דוד וייץ

משוואות רקורסיביות רקורסיה זו משוואה או אי שוויון אשר מתארת פונקציה בעזרת ערכי הפונקציה על ארגומנטים קטנים. למשל: יונתן יניב, דוד וייץ משוואות רקורסיביות הגדרה: רקורסיה זו משוואה או אי שוויון אשר מתארת פונקציה בעזרת ערכי הפונקציה על ארגומנטים קטנים למשל: T = Θ 1 if = 1 T + Θ if > 1 יונתן יניב, דוד וייץ 1 דוגמא נסתכל על האלגוריתם הבא למציאת

Διαβάστε περισσότερα

מתמטיקה בדידה תרגול מס' 13

מתמטיקה בדידה תרגול מס' 13 מתמטיקה בדידה תרגול מס' 13 נושאי התרגול: תורת הגרפים. 1 מושגים בסיסיים נדון בגרפים מכוונים. הגדרה 1.1 גרף מכוון הוא זוג סדור E G =,V כך ש V ו E. V הגרף נקרא פשוט אם E יחס אי רפלקסיבי. כלומר, גם ללא לולאות.

Διαβάστε περισσότερα

מודלים חישוביים תרגולמס 5

מודלים חישוביים תרגולמס 5 מודלים חישוביים תרגולמס 5 30 במרץ 2016 נושאי התרגול: דקדוקים חסרי הקשר. למת הניפוח לשפות חסרות הקשר. פעולות סגור לשפות חסרות הקשר. 1 דקדוקים חסרי הקשר נזכיר כי דקדוק חסר הקשר הוא רביעיה =(V,Σ,R,S) G, כך

Διαβάστε περισσότερα

אלגברה ליניארית 1 א' פתרון 7

אלגברה ליניארית 1 א' פתרון 7 אלגברה ליניארית 1 א' פתרון 7 2 1 1 1 0 1 1 0 1 0 2 1 1 0 1 0 2 1 2 1 1 0 2 1 0 1 1 3 1 2 3 1 2 0 1 5 1 0 1 1 0 1 0 1 1 0 0 1 0 1 1 0 0 1 0 0 4 0 0 0.1 עבור :A לכן = 3.rkA עבור B: נבצע פעולות עמודה אלמנטריות

Διαβάστε περισσότερα

לדוגמא : dy dx. xdx = x. cos 1. cos. x dx 2. dx = 2xdx לסיכום: 5 sin 5 1 = + ( ) הוכחה: [ ] ( ) ( )

לדוגמא : dy dx. xdx = x. cos 1. cos. x dx 2. dx = 2xdx לסיכום: 5 sin 5 1 = + ( ) הוכחה: [ ] ( ) ( ) 9. חשבון אינטגרלי. עד כה עסקנו בבעיות של מציאת הנגזרת של פונקציה נתונה. נשאלת השאלה בהינתן נגזרת האם נוכל למצוא את הפונקציה המקורית (הפונקציה שנגזרתה נתונה)? זוהי שאלה קשה יותר, חשבון אינטגרלי דן בבעיה

Διαβάστε περισσότερα

(2) מיונים השאלות. .0 left right n 1. void Sort(int A[], int left, int right) { int p;

(2) מיונים השאלות. .0 left right n 1. void Sort(int A[], int left, int right) { int p; מבני נתונים פתרונות לסט שאלות דומה לשאלות בנושאים () זמני ריצה של פונקציות רקורסיביות () מיונים השאלות פתרו את נוסחאות הנסיגה בסעיפים א-ג על ידי הצבה חוזרת T() כאשר = T() = T( ) + log T() = T() כאשר =

Διαβάστε περισσότερα

דינמיקה כוחות. N = kg m s 2 מתאפסת.

דינמיקה כוחות. N = kg m s 2 מתאפסת. דינמיקה כאשר אנו מנתחים תנועה של גוף במושגים של מיקום, מהירות ותאוצה כפי שעשינו עד כה, אנו מדלגים על ניתוח הכוחות הפועלים על הגוף. כוחות אלו ומסתו של הגוף הם אשר קובעים את תאוצתו. על מנת לקבל קשר בין הכוחות

Διαβάστε περισσότερα